An Experimental Investigation of the Transient Characteristics on a Flat-Plate Heat Pipe During Startup and Shutdown Operations

نویسندگان

  • Y. Wang
  • K. Vafai
چکیده

This work presents an experimental investigation of the thermal performance of a flatplate heat pipe during startup and shutdown operations. Using the analytical model developed in a previously study, analytical and experimental results on the effect of input power and cooling heat transfer coefficient on the thermal performance of the heat pipe are presented and discussed. The results indicate that the wick in the evaporator section provides the largest resistance to the heat transfer process followed by the wick in the condenser section. It is found that the heat transfer coefficient has an insignificant effect on the maximum temperature difference across the heat pipe where this difference refers to the maximum difference on the outside surfaces of the flat-plate heat pipe. However, as expected, the input heat flux has a substantial effect on the temperature rise where the temperature rise refers to the temperature increase on the outside surface of the heat pipe. It is found that the temperature difference across the heat pipe depends mainly on the input power. The heat transfer coefficient strongly affects the time it takes to reach steady state while input power has a substantially smaller effect. Empirical correlations for the maximum temperature rise, the maximum temperature difference and the time constants are obtained. The experimental results are compared with the analytical results and are found to be in very good agreement. @S0022-1481~00!01803-X#

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analytical modeling of the startup characteristics of asymmetrical flat-plate and disk- shaped heat pipes

An analytical model is developed for the startup transient of asymmetrical flat-plate and diskshaped heat pipes. The model solves the proper transient heat conduction equations for the heat pipe wall and liquid-wick regions. A quasi-steady state, pseudo three-dimensional approximation is used for the vapor transi’ent behavior. The heat transfer within the wall and liquid-wick regions is coupled...

متن کامل

Experimental investigation on performance comparison of nanofluid-based direct absorption and flat plate solar collectors

In the present work, a prototype of a new type of solar collectors, which called Direct Absorption Solar Collector, was built and its thermal performance is experimentally compared with conventional flat plate solar collector under transient and steady state conditions. Different volume fractions of multi wall carbon nanotubes in water and ethylene glycol mixture (70%:30% in volume) were used a...

متن کامل

Experimental investigation on performance comparison of nanofluid-based direct absorption and flat plate solar collectors

In the present work, a prototype of a new type of solar collectors, which called Direct Absorption Solar Collector, was built and its thermal performance is experimentally compared with conventional flat plate solar collector under transient and steady state conditions. Different volume fractions of multi wall carbon nanotubes in water and ethylene glycol mixture (70%:30% in volume) were used a...

متن کامل

Experimental and Numerical Investigations on Al2O3–Tricosane Based Heat Pipe Thermal Energy Storage

The enhancement of operating life cycle of electronic devices necessitates the development of efficient cooling techniques. Therefore, in the present work the effects of employment of Phase Change Material, in the adiabatic section of heat pipe for electronic cooling applications were experimentally and numerically investigated. Tricosane (100 ml) is chosen as PCM in this study, where Al2O3 nan...

متن کامل

Experimental Investigation of Heat Transfer Enhancement in a Finned U-Shaped Heat Pipe of CPU Cooling System Using Different Fluids

This paper experimentally studies the heat absorption performance of a heat sink with vertical embedded heat pipes in the aluminum blade. The cooling system with embedded heat pipes distributes heat from the CPU to both the base plate and the heat pipes, and then transfer heat from fins to the Environment. The thermal resistance and heat transfer coefficient are evaluated for natural convection...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000